TWEAK/Fn14 interaction regulates RANTES production, BMP-2-induced differentiation, and RANKL expression in mouse osteoblastic MC3T3-E1 cells
نویسندگان
چکیده
Tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), a member of the TNF family, is a multifunctional cytokine that regulates cell growth, migration, and survival principally through a TWEAK receptor, fibroblast growth factor-inducible 14 (Fn14). However, its physiological roles in bone are largely unknown. We herein report various effects of TWEAK on mouse osteoblastic MC3T3-E1 cells. MC3T3-E1 cells expressed Fn14 and produced RANTES (regulated upon activation, healthy T cell expressed and secreted) upon TWEAK stimulation through PI3K-Akt, but not nuclear factor-kappaB (NF-kappaB), pathway. In addition, TWEAK inhibited bone morphogenetic protein (BMP)-2-induced expression of osteoblast differentiation markers such as alkaline phosphatase through mitogen-activated protein kinase (MAPK) Erk pathway. Furthermore, TWEAK upregulated RANKL (receptor activation of NF-kappaB ligand) expression through MAPK Erk pathway in MC3T3-E1 cells. All these effects of TWEAK on MC3T3-E1 cells were abolished by mouse Fn14-Fc chimera. We also found significant TWEAK mRNA or protein expression in osteoblast- and osteoclast-lineage cell lines or the mouse bone tissue, respectively. Finally, we showed that human osteoblasts expressed Fn14 and induced RANTES and RANKL upon TWEAK stimulation. Collectively, TWEAK/Fn14 interaction regulates RANTES production, BMP-2-induced differentiation, and RANKL expression in MC3T3-E1 cells. TWEAK may thus be a novel cytokine that regulates several aspects of osteoblast function.
منابع مشابه
Mechanical stress up-regulates RANKL expression via the VEGF autocrine pathway in osteoblastic MC3T3-E1 cells.
Although it has been reported that vascular endothelial growth factor (VEGF) promotes not only angiogenesis but also osteoclast and osteoblast differentiation, few reports exist regarding VEGF/VEGF receptor (VEGFR) signaling in osteoblasts, which regulate osteoclast differentiation and generate VEGF. This study examined the expression of the bone remodeling factor VEGF-A and its receptors, VEGF...
متن کاملActivation of caspases is required for osteoblastic differentiation.
Previous studies have shown that mouse osteoblastic MC3T3-E1 cells undergo apoptosis when exposed to a mixture of proinflammatory cytokines. Bone morphogenetic protein (BMP)s are important regulators of osteoblast differentiation. Because regulation of osteoblastic differentiation is poorly understood, we sought to determine if BMP-4-induced differentiation of osteoblastic cells depends on the ...
متن کاملDihydrotestosterone, a robust promoter of osteoblastic proliferation and differentiation: understanding of time-mannered and dose-dependent control of bone forming cells
Objective(s): The present study was aimed to evaluate the time-mannered and dose-dependent effects of 5α-dihydrotestosterone (5α-DHT) on the proliferation and differentiation of bone forming cells using MC3T3-E1 cells. Materials and Methods: Cell proliferation was analyzed using MTS and phase contrast microscopic assays. Osteogenic differentiation was assessed through a series of in vitro exper...
متن کاملInactivation of menin, the product of the multiple endocrine neoplasia type 1 gene, inhibits the commitment of multipotential mesenchymal stem cells into the osteoblast lineage.
The physiological roles of menin, the product of the multiple endocrine neoplasia type 1 gene, are not known. Homozygous menin knockout mice exhibit cranial and facial hypoplasia. We, therefore, investigated the role of menin in the regulation of osteoblastic differentiation. Menin antisense oligonucleotides (AS-oligo) reduced endogenous menin expression in the C3H10T1/2 (10T1/2) mouse mesenchy...
متن کاملLinarin promotes osteogenic differentiation by activating the BMP-2/RUNX2 pathway via protein kinase A signaling.
Linarin (LIN), a flavonoid which exerts both anti-inflammatory and antioxidative effects, has been found to promote osteogenic differentiation. However, the molecular mechanism of its effect on osteoblast differentiation was unclear. In the present study, LIN from Flos Chrysanthemi Indici (FCI) was isolated in order to investigate the underlying mechanisms of LIN on MC3T3-E1 cells (a mouse oste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arthritis Research & Therapy
دوره 8 شماره
صفحات -
تاریخ انتشار 2006